I am piping output from one program into some Perl I wrote. This is a long running process , sometimes days, so I want to find out where my bottlenecks are and try to open them up. I want to know if data is being piped into my script faster than my script can process it. If this is the case I will try to tune up my script, but not if I don't need to. I see talk about a flag being set when the buffer is full that prevents any more writes to it but how do I check to see if or how often that flag is set? Any ideas?
2 Answers
I would trace your Perl script with a system call trace tool: strace
(Linux), dtruss
(OS X), ktrace
(FreeBSD), truss
(Solaris), etc. The goal would be to see how much time your Perl script spends waiting on reading from its stdin and how much time the other program spends waiting on writing to its stdout.
Here I'm testing this out with the writer as the bottleneck:
terminal 1$ gzip -c < /dev/urandom | cat > /dev/null
terminal 2$ ps auxw | egrep 'gzip|cat'
slamb 25311 96.0 0.0 2852 516 pts/0 R+ 23:35 3:40 gzip -c
slamb 25312 0.8 0.0 2624 336 pts/0 S+ 23:35 0:01 cat
terminal 2$ strace -p 25312 -s 0 -rT -e trace=read
Process 25312 attached - interrupt to quit
0.000000 read(0, ""..., 4096) = 4096 <0.005207>
0.005531 read(0, ""..., 4096) = 4096 <0.000051>
The first number here is the time since the start of the previous syscall, and the last number is the time spent in the syscall. So we can post-process with Perl a bit to aggregate it... [*]
terminal 2$ strace -p 25312 -s 0 -rT -e trace=read 2>&1 | perl -nle 'm{^\s*([\d.]+) read\(0, .*<([\d.]+)>} or next; $total_work += $1 - $last_wait; $total_wait += $2; $last_wait = $2; print "working for $total_work sec, waiting for $total_wait sec"; $last_wait = $2;'
working for 0 sec, waiting for 0.005592 sec
...
working for 0.305356 sec, waiting for 2.28624900000002 sec
...
terminal 2$ strace -p 25311 -s 0 -rT -e trace=write 2>&1 | perl -nle 'm{^\s*([\d.]+) write\(1, .*<([\d.]+)>} or next; $total_work += $1 - $last_wait; $total_wait += $2; $last_wait = $2; print "working for $total_work sec, waiting for $total_wait sec"; $last_wait = $2;'
...
working for 5.15862000000001 sec, waiting for 0.0555740000000007 sec
...
You could go fancier and make a SystemTap or DTrace script that does traces both sides at once, only tracks the correct file descriptor, and prints a nice status update every second or so with what percent of time each was waiting for the other.
[*] - Warning: my crude aggregation isn't quite right if read/write is being called on other file descriptors; it will underestimate the work time in that case.
The dtrace version is pretty neat actually.
terminal 1$ gzip -c < /dev/urandom | cat > /dev/null
terminal 2$ ps aux | egrep 'gzip| cat'
slamb 54189 95.8 0.0 591796 584 s006 R+ 12:49AM 22:49.55 gzip -c
slamb 54190 0.4 0.0 599828 392 s006 S+ 12:49AM 0:06.08 cat
terminal 2$ cat > pipe.d <<'EOF'
#!/usr/sbin/dtrace -qs
BEGIN
{
start = timestamp;
writer_blocked = 0;
reader_blocked = 0;
}
tick-1s, END
{
this->elapsed = timestamp - start;
printf("since startup, writer blocked %3d%% of time, reader %3d%% of time\n",
100 * writer_blocked / this->elapsed,
100 * reader_blocked / this->elapsed);
}
syscall::write:entry
/pid == $1 && arg0 == 1/
{
self->entry = timestamp;
}
syscall::write:return
/pid == $1 && self->entry != 0/
{
writer_blocked += timestamp - self->entry;
self->entry = 0;
}
syscall::read:entry
/pid == $2 && arg0 == 0/
{
self->entry = timestamp;
}
syscall::read:return
/pid == $2 && self->entry != 0/
{
reader_blocked += timestamp - self->entry;
self->entry = 0;
}
EOF
terminal 2$ chmod u+x pipe.d
terminal 2$ sudo ./pipe.d 54189 54190
since startup, writer blocked 0% of time, reader 98% of time
since startup, writer blocked 0% of time, reader 99% of time
since startup, writer blocked 0% of time, reader 99% of time
since startup, writer blocked 0% of time, reader 99% of time
since startup, writer blocked 0% of time, reader 99% of time
^C
since startup, writer blocked 0% of time, reader 99% of time
And the SystemTap version:
terminal 1$ gzip -c /dev/urandom | cat > /dev/null
terminal 2$ ps auxw | egrep 'gzip| cat'
slamb 3405 109 0.0 4356 584 pts/1 R+ 02:57 0:04 gzip -c /dev/urandom
slamb 3406 0.2 0.0 10848 588 pts/1 S+ 02:57 0:00 cat
terminal 2$ cat > probes.stp <<'EOF'
#!/usr/bin/env stap
global start
global writer_pid
global writes
global reader_pid
global reads
probe begin {
start = gettimeofday_us()
writer_pid = strtol(argv[1], 10)
reader_pid = strtol(argv[2], 10)
}
probe timer.s(1), end {
elapsed = gettimeofday_us() - start
printf("since startup, writer blocked %3d%% of time, reader %3d%% of time\n",
100 * @sum(writes) / elapsed,
100 * @sum(reads) / elapsed)
}
probe syscall.write.return {
if (pid() == writer_pid && $fd == 1)
writes <<< gettimeofday_us() - @entry(gettimeofday_us())
}
probe syscall.read.return {
if (pid() == reader_pid && $fd == 0)
reads <<< gettimeofday_us() - @entry(gettimeofday_us())
}
EOF
terminal 2$ chmod a+x probes.stp
terminal 2$ sudo ./pipe.stp 3405 3406
since startup, writer blocked 0% of time, reader 99% of time
...

- 1,069
- 6
- 7
You could insert a pv -TC
command in your pipe line:
cmd1 | pv -TC | cmd2
pv
uses its own buffer and -T
makes it report how full it is on average on 1 second periods (by default).
If it's always 100%, then that means cmd1
is faster at producing output than cmd2
at consuming it. If not, then it's the other way around. Beware that pipes themselves can hold 64kB.
See also -B
to specify pv
's buffer size. You can use several pv
s as in:
$ cmd1 | pv -cCTrbN 'cmd1 -> cmd2' | cmd2 | pv -cCTrbN 'cmd2 -> cmd3' | cmd3
cmd1 -> cmd2: 1.92GiB { 53%} [ 387MiB/s]
cmd2 -> cmd3: 1.92GiB { 0%} [ 387MiB/s]

- 544,893
pv
somewhere along the pipe chain. – amphetamachine Sep 15 '11 at 03:43